Minimal Homogenous Liaison and Licci Ideals
نویسندگان
چکیده
We study the linkage classes of homogeneous ideals in polynomial rings. An ideal is said to be homogeneously licci if it can be linked to a complete intersection using only homogeneous regular sequences at each step. We ask a natural question: if I is homogeneously licci, then can it be linked to a complete intersection by linking using regular sequences of forms of smallest possible degree at each step (we call such ideals minimally homogeneously licci)? In this paper we answer this question in the negative. In particular, for every n ≥ 28 we construct a set of n points in P3 which are homogeneously licci, but not minimally homogeneously licci. Moreover, we prove that one cannot distinguish between the classes of homogeneously licci and non-licci ideals based only on their Hilbert functions, nor distinguish between homogeneously licci and minimally homogeneously licci ideals based solely on the graded Betti numbers. Finally, by taking hypersurface sections, we show that the natural question has a negative answer whenever the height of the ideal is
منابع مشابه
Liaison of Monomial Ideals
We give a simple algorithm to decide whether a monomial ideal of nite colength in a polynomial ring is licci, i.e., in the linkage class of a complete intersection. The algorithm proves that whether or not such an ideal is licci does not depend on whether we restrict the linkage by only allowing monomial regular sequences, or homogeneous regular sequences, or arbitrary regular sequences. We app...
متن کاملMinimal Links and a Result of Gaeta
If V is an equidimensional codimension c subscheme of an n-dimensional projective space, and V is linked to V ′ by a complete intersection X, then we say that V is minimally linked to V ′ if X is a codimension c complete intersection of smallest degree containing V . Gaeta showed that if V is any arithmetically Cohen-Macaulay (ACM) subscheme of codimension two then there is a finite sequence of...
متن کاملLiaison Addition and the Structure of a Gorenstein Liaison Class
We study the concept of liaison addition for codimension two subschemes of an arithmetically Gorenstein projective scheme. We show how it relates to liaison and biliaison classes of subschemes and use it to investigate the structure of Gorenstein liaison equivalence classes, extending the known theory for complete intersection liaison of codimension two subschemes. In particular, we show that o...
متن کاملMonomial Ideals and the Gorenstein Liaison Class of a Complete Intersection
In an earlier work the authors described a mechanism for lifting monomial ideals to reduced unions of linear varieties. When the monomial ideal is Cohen-Macaulay (including Artinian), the corresponding union of linear varieties is arithmetically CohenMacaulay. The first main result of this paper is that if the monomial ideal is Artinian then the corresponding union is in the Gorenstein linkage ...
متن کاملOn the Componentwise Linearity and the Minimal Free Resolution of a Tetrahedral Curve
A tetrahedral curve is an unmixed, usually non-reduced, one-dimensional subscheme of projective 3-space whose homogeneous ideal is the intersection of powers of the ideals of the six coordinate lines. The second and third authors have shown that these curves have very nice combinatorial properties, and they have made a careful study of the even liaison classes of these curves. We build on this ...
متن کامل